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Abstract 

We define and study the theory of derivation-based connections on a recently introduced class 
of bimodules over an algebra which reduces to the category of modules whenever the algebra 
is commutative. This theory contains, in particular, a noncommutative generalization of linear 
connections. We also discuss the different noncommutative versions of differential forms based 
on derivations. Then we investigate reality conditions and a noncommutative generalization of 
pseudo-riemannian structures. 
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1. Introduction and notations 

There are several noncommutative generalizations of the calculus of differential forms 
and, more generally, of the differential calculus of classical differential geometry, e.g. [2- 
111. As stressed in [3], the extension of classical tools to the noncommutative setting is never 
straightforward. This means that, in order to produce relevant objects, one must have in mind 
a lot of examples coming from both mathematics and physics. In this paper, we concentrate 
on the differential calculus based on derivations as generalization of vector fields [4]. It was 
shown in [5] that this differential calculus is natural for quantum mechanics in the sense that 
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with it, quantum mechanics has the same relation to noncommutative symplectic geometry 
as classical mechanics to classical symplectic geometry. For finite quantum spin systems this 
was already pointed out in [6]. Furthermore it is also worth noticing that this differential 
calculus was used in [7] (see also [5] for a review) to produce a first noncommutative 
extension of classical gauge theory in which the Higgs fields appear as the components of 
the gauge potential (i.e. the connection) in the “noncommutative directions”. 

In this paper, A is an associative algebra over K = R or C with a unit 1. The algebra A is 
to be considered as the generalization of the algebra of smooth functions and the Lie algebra 
Der(A) of all derivations of A as the generalization of the Lie algebra of smooth vector 
fields. The Lie algebra Der(A) is also a module over the center Z(A) of A and furthermore 
Z(A) is stable by the action of Der(A). The corresponding Lie algebra homomorphism of 
Der(A) into the Lie algebra Der(Z(A)) factorizes through the Lie algebra Out(A) of all 
derivations of A modulo the ideal bit(A) of all inner derivations of A; the Lie algebra Out(A) 
is also a Z(A)-module. Notice that if A is commutative, A = Z(A) and Der(A) = Out(A); 
so Out(A) is also a generalization of the Lie algebra of vector fields and this is a good 
generalization for a theory of “invariants”. Indeed in general one has H’(A, A) = Z(A) 
andH’(A, A) = Out(A)(whereasDer(A) = Z’(A. A)),whereH(A, A)istheHochschild 
cohomology of A with value in A. So Z(A) and Out(A) are Morita invariant as well as the 
homomorphism of Out(A) into Der(Z(A)). We now recall the relevant generalizations of 
differential forms in this context [4,10]. As for the commutative case [ 121, the notions of 
differential forms can be extracted from the differential algebra C(Der(A), A) of Chevalley- 
Eilenberg cochains of the Lie algebra Der(A) with values in the Der(A)-module A. There 
are two natural generalizations of the graded differential algebra of differential forms which 
use Der( A) as generalization of vector fields: a minimal one, Qber( A), which is the smallest 
differential subalgebra of C(Der(A), A) which contains A and a maximal one, &,,(A), 
which consists of all cochains in C(Der(A). A) which are Z(A)-multilinear. 

As mentioned above, it is also useful to use Out(A) as generalization of vector fields. 
The corresponding generalizations of differential forms finout and gout(A) are. re- 
spectively, graded differential subalgebras of L20er(A) and &.,(A). To obtain them, one 
notices that there is a canonical operation, in the sense of Cartan [ 11, X I-+ ix for X E 
Der(A), of the Lie algebra Der(A) in the graded differential algebra C(Der(A), A) defined 
by ixa(Xt.. . . X,,_I) = CY(X. XI,. , X,-I) for Xk E Der(A) anda, E C”(Der(A), A). 
Both &,,(A) and &,(A) are stable by the ix, X E Der(A). and Qo”t(A) and &,(A) 
are defined to be the respective differential subalgebras which are basic with respect to the 
corresponding operation of Int(A), i.e. one has: 

520,,(A) = (a E &,,(A) 1 ixa = 0 and Lxcr = 0 VX E bit(A)), 

Gout(A) = (a E &,,(A) 1 i,yol = 0 and Lxa = 0 VX E Int(A)], 

where LX = di,y + ixd as usual. One has the inclusions of graded differential algebras 

QD~~(A) C &,(A) 

U U 
Gout(A) c Go,t(A) 
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In the case where A is the algebra of smooth functions on a finite-dimensional paracompact 
smooth manifold, all these graded differential algebras coincide with the graded differ- 
ential algebra of differential forms. In general, there is a differential calculus for A in 
&,,(A) and Q,,,(A). However if A is not commutative, i.e. A # Z(A), then G&(A) 
and gout(A) do not contain A and are not A-modules. So they do not carry a differential 
calculus for A. The differential algebra 52 _out(A) can be identified with the differential al- 
gebra Cz(A)(Out(A), Z(A)) of Z(A)-linearcochains of the Lie algebra Out(A) with values 
in Z(A). So gout(A) is a Morita invariant generalization of differential forms. We shall 
use QD,,(A) for the differential calculus and then, the “invariants” will be closed elements 
in the subalgebra go,,(A) leading to Morita invariants in the cohomology HoUt(A). 

In this paper, we wish to extend, for A noncommutative, the theory of connections (deriva- 
tion laws) on A-modules for A commutative as formulated in [ 121. There are several non- 
commutative generalizations of the notion of module over a commutative algebra. First, one 
can consider the notion of right (or left) A-module, that was in particular the point of view 
adopted in [7] . Alternatively, one can remember that a module over a commutative algebra 
is canonically a bimodule of a very specific kind and we speak of the induced structure 
of bimodule. There are several reasons to prefer a notion of bimodule rather than that of 
right or left module. The first one is that, for any differential calculus for A, the one-forms 
constitute such a bimodule and that we wish to be able to define linear connections (e.g. 
to produce noncommutative versions of general relativity). A second very general reason, 
which is connected with reality in noncommutative geometry, is explained in Section 8. 
In [9], we introduced the notion of central bimodule: this is just a A-bimodule such that 
the underlying structure of Z(A)-bimodule is induced by a structure of Z(A)-module, i.e. 
multiplication by elements of Z(A) on both sides coincide. This notion is stable by arbi- 
trary projective and inductive limits and by tensor products over A or over Z(A). When A 
is commutative, a central bimodule is just a module (for the induced bimodule structure). 
It is for this notion that we define and study connections in this paper. In [9,10] we also 
introduced the more restrictive notion of diagonal bimodule: this is a bimodule isomorphic 
to a subbimodule of A’ for some set I, where A is equipped with its canonical structure of 
A-bimodule. A diagonal bimodule is central, and if A is commutative, a diagonal bimodule 
is just a module such that the canonical mapping into its bidual is injective. Both L?p,(A) 

and &.,(A) are diagonal and therefore central; this is why the notion of connection con- 
sidered here includes a generalization of the notion of linear connection. Furthermore, and 
this was the very reason diagonal bimodules were introduced, it was shown in [9] that the 
derivation (differential) d : A + C?,&,(A) is universal for derivations of A into diagonal 
bimodules: i.e. for any derivation 6 : A -+ A4 of A into a diagonal bimodule M, there is a 
unique bimodule homomophism is : 52&,,,(A) -+ A4 such that 6 = id o d. 

Finally we shall need, to describe torsion for instance, the generalization of vector-valued 
differential forms. It was shown in [lo] that the right spaces to generalize the Frolicher- 
Nijenhuis bracket were the space Der(A, L&(A)) of derivations of A into f2~,,(A) if 
one uses C&(A) as generalization of differential forms and the space Der(A, QD,,(A)) 

if one uses &,(A) as generalization of differential forms. In this paper, it is the latter 
generalization that will be considered. If N and M are A-bimodules, we use the notation 



MDubois Violette, RW Michor/Joumal of Geometry and Physics 20 (1996) 218-232 221 

Homi(N, M) to denote the space of bimodule homomorphisms of N into M. This is a 
Z(A)-bimodule which is in fact a Z(A)-module whenever M is central. 

The plan of the paper is the following. In Section 2 we define the notion of derivation- 
based connection on central bimodules. In Section 3 we describe some constructions which 
allow to produce new connections from given connections. In Section 4 we define linear 
connections and their torsions. In Section 5 we give some basic examples. In Section 6 we 
introduce and study a duality between bimodules and modules over the center. In Section 7 
we apply this duality to the one-forms showing, in particular, that &,,(A) is the bidual of 
Q;,,(A) for this duality. In Section 8 we study reality conditions for the case of *-algebras. 
Finally, in Section 9 we investigate a noncommutative generalization of pseudo-riemannian 
structures in our framework. 

2. Connections on central bimodules 

Let M be a central bimodule over A, a connection on M is a linear mapping V, X H Vx, 
of Der(A) into the linear endomorphisms of M such that one has 

V;x(m) = zVx(m), Vx(amb) = X(a)mh + aVx(m)b + umX(b) 

Vm E M. VX E Der(A), Vz E Z(A) and Vu, b E A. 
Given V as above, the curvature R of V is the bilinear antisymmetric mapping (X, Y) H 

Rx.y of Der(A) x Der(A) into the linear endomorphisms of M defined by 

Rx,yh) = Vx(Vy(m)) - Vy(Vx(m)) - Vlx.yl(m) VX, Y E Der(A). Vm E M. 

One has the following properties: 

R,x.r(m) = ZRX,Y Cm>, Rx,y(amb) = aRx,y(m)b 

Vm E M,VX, Y E Der(A),Vz E Z(A),Vu, b E A. 
Thus R is an antisymmetric Z(A)-bilinear mapping of Der(A) x Der(A) into the Z(A)- 

module Hom$(M, M), i.e. 

R E Homz(A) (“;(A, Der(A), Hom$(M, M)). 

From its very definition and from the Jacobi identity, it follows that R satisfies the Biunchi 
identity 

[Vx, Rv.zl+ WY, Rz,xl+ [Vz, Rx.rl = R[X.YI.Z + &Y,ZI,X + R[z.xI.Y. 

There is another way to describe all that. Let Q&r (A, M) be the space (in fact the Z(A)- 
module) of antisymmetric Z(A)-multilinear mappings of (Der(A))” into M, i.e. one has 

Q;,r(A, M) = Homz(A)(A”ZCA)Der(A), M). 

The spaces cDer(A, M) as well as &,, (A, M) = $, C&_(A, M) are canonically 
A-bimodules which are central bimodules. Then a connection V as above on M is sim- 
ply a linear mapping of M into &._ ’ (A, M) which satisfies 
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V(amb) = da @A mb + aV(m)b + am 8.4 db Vu, b E A and tlm E M, 

where the canonical bimodule homomorphisms 

&,(A) @A M -+ &,(A, W and M @A @,,,(A) + L&,(A, W 

have been used. 
More generally, by using the canonical bimodule homomorphisms 

and 

&,,(A, M) @A G;f,,W --f Z;:G% W, 

one equips gDe,( A, M) with a structure of graded &,,(A)-bimodule. Let us extend V : 

&,(A, W -+ &,,, (A, M) to an endomorphism, again denoted by V, of &.,(A, Ml 
with V(Q”,,,(A, M)) c J2::: (A, M) by the following definition: 

k 

(V6o)(Xo, . . . , X,) = c (-ukVXLcp(XO’ .‘(., x,1 

Oskin 

+ c (-l)‘+“cp([X,,X,,,Xo,.~.,.~.,X,) 
05r<s5n 

k 

for q E Q$,(A, M) and Xk E Der(A), where ‘: means omission of Xk. One has, for 

Q E G&(A), B E &.,(A) and cp E &(A, M): 

V((Y(PB) = (da)@ + (-lYaV(cp)B + (- l)a+“wpd~. 

It follows that V2 which is the canonical extension of the curvature satisfies V2(crcp/I) = 
aV2(p)#?, i.e. it is a homomorphism of fi _&,(A)-bimodules (and of graded &,(A)- 

bimodules) of &,, (A, M) into itself (the Bianchi identity now reads V(V2) = (V2)V). 

3. Associated connections 

There exist central bimodules which do not admit connections. For instance, in [12], 
Koszul gives the following example: take A = K[t], i.e. the commutative algebra of poly- 
nomials in t, and M = A/N where N is the ideal of polynomials without constant term; 
then M is a central bimodule since it is an A-module with A commutative and there is no 
connection on M because if V is such a connection and if e denotes the class of 1 in A/N, 

one must have 

0 = Va/at(te) = e + tVa/at(e) = e, 

i.e. a contradiction. However, if X H Vx is a connection on a central bimodule M 

and if X H rx is a Z(A)-linear mapping of Der(A) into Homj(M, M) then X H 
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Vx + TX is also a connection on M and all connections on M are of this form; i.e. if the 
set of connections on a central bimodule M is not empty, it is an affine space modelled 
on Homz(A)(Der(A), Homj(M, M)). Notice that, for M = A, Vx(a) = X(a) (Vu E 
A, VX E Der(A)) is a connection on A with vanishing curvature which will be referred to 
as the canonical connection on A. In this section, we will describe connections on central 
bimodules associated with bimodules which admit connections. These connections will be 
accordingly called associated connections. 

Let M be a central bimodule equipped with a connection V and let N be a subbimodule 
of M. Assume that VxN c N for any X E Der(A). Then the restriction of V to N ( i.e. 
of the Vx , X E Der(A)) is a connection on N and V induces a connection on the quotient 
bimodule M/N. In both cases, we shall speak of the induced connections by V to design 
these connections on N and on Ml N. 

Let (Mi)i,~ be a family of central bimodules equipped with connections Vi. Then 
Vx((mi)iEl) = (VfY(mi))iel, for mi E Mi and X E Der(A), defines a connection on 
the product n,,, Mi. By restriction, one obtains a connection on the direct sum eiE, Mi, 

‘X(Ci mi) = xi V kmi, since Vx(Bi,,M) c $iE,Mi for any X E Der(A). These 
connections will be called product and direct sum of the connections Vi. One defines sim- 
ilarly projective limits and inductive limits of connections when the appropriate stability 
conditions are satisfied. 

Let M and M’ be two central bimodules equipped with connections V and V’. For 
X E Der(A), consider the linear endomorphisms VX 8 idMj + idM @ Vi of M ~3 M’. 
The bimodule M ~3 M’ is not central in general, however the subbimodules generated, 
respectively, by 

ma@m’-m@am’, a E A, m E M, m’ E M’ 

mz C3 m’ - m 8 zm’, z E Z(A), m E M, m’ E M 

are stable by the above endomorphisms (remembering that Der(A)(Z(A)) c Z(A)), so 
they define endomorphisms of M @A M’ and of M @Z(A) M’ which are easily seen to be 
connections on M 8,~ M’ and M @Z(A) M’, respectively. These connections will be called 
tensor product of V and V’ over A and over Z(A), respectively. By induction, one defines 
the tensor product (over A or over Z(A)) of a finite family of connections on a finite family 
of central bimodules. This tensor product is associative in an obvious sense. 

In particular, if M is a central bimodule with a connection V, then by applying the above 
construction, one obtains a connection V@ on the tensor algebra of M over A, TA(M) = 
@,(@, M), satisfying V:(a) = X(a) f or a E A = T:(M) and X E Der(A). One has 
VF(tr’) = VF(t)t’ + tVF(t’) fort, t’ E TA(M), X E Der(A). 

Let M be a central bimodule, then Horn: (M, M) is an algebra over Z(A). The group of 
invertible elements of Horn; (M, M) will be called the group of gauge transformations of 
M. Given a connection X H VX and a gauge transformation g on M, X H g o Vx o g-’ 
is again a connection which will be referred to as the gauge transform of V by g. Two 
connections belonging to the same orbit will be called gauge equivalent connections. 
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4. The case M = &,,(A): linear connections 

The bimodule &,(A) is diagonal and therefore central. A connection V on &,(A) 
will be called a linear connection. There is a canonical bimodule homomorphism I_L : 

&&%-n;,,(A)) --f &, (A) which extends the product &__,(A)@3,&,,(A) -+ 

&(A), namely p(q)(X, Y) = ~0x0’) - w(X) for X, Y E Der(A) and (p E &,,, 
(A, &,(A)). Given a linear connection V, one defines a linear mapping T of A into 
i&,(A) by setting T(a) = -p o V(da) for a E A. One has T(d) = T(u)b + UT(~) for 
a, b E A, therefore T is an element of Der(A, L?&(A)) which will be called the torsion of 
the linear connection V. Since J&r (A) is a diagonal bimodule, it follows from the universal 
property of the derivation d : A + ii’,!,,, that there is a unique bimodule homomorphism 

in : f&,,(A) --f -n;,,(A> such that T = iT o d. The explicit form of iT is easy to write, 
one has iT = d - p o V which extends as a bimodule homomorphism of i&,,(A) into 
L&,(A). We shall frequently identify the torsion T E Der(A, #&(A)) with this element 

of Hom~(&.,(A), &,(A)). 

5. Examples 

5.1. The case where A is commutative 

In the case where A is commutative, a central bimodule is simply an A-module and the 
notion of connection defined here reduces to the usual one, i.e. to the notion of derivation 
laws of [ 121. One obtains the classical notion of connection on a smooth vector bundle E of 
finite rank over a smooth finite-dimensional paracompact manifold V by taking the algebra 
C”(V) of smooth functions on V for A and by taking the module f(E) of smooth sections 
of E, i.e. a typical finite projective module over A = C”(V). Since the canonical mapping 
of r(E) into its bidual is injective, the underlying bimodule is not only central but it is also 
a diagonal bimodule. 

Now we investigate cases which are of “opposite side”. 

5.2. The case where Out(A) = 0 

Let us now assume that A is a noncommutative algebra which has only inner derivations, 
i.e. Int(A) = Der(A) or, equivalently Out(A) = 0. In this case, every central bimodule 

A4 admits a canonical connection 6 with vanishing curvature defined by: 6ad(x)(m) = 
xm - mx Vx E A and Vm E M. The other connections on M are of course of the form 

v c ad(x) = V&(x) f&f(x) where r E Homz(A) (lnt(A), Horn; (M, M)). Since the curvature 

of V vanishes one cannot have a nontrivial theory of characteristic classes using the above 
notion of connection for such algebras. This also partly explains why, in the general case, 
one has to factorize the inner derivations out in order to get a good theory of invariants. 
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For M = &,,(A), 6 ’ IS alinearconnection. Its torsion T is given by T(a}(ad(x), ad(y)) 
= -ad[x, yl(a) = -[lx, yl, al, or ir(w)(ad(x), ad(y)) = -o(ad([x, y])) for x, y. a E 
A, w E -n;,,(A). 

5.3. The case where A has a trivial center Z(A) = lt6.1 

In this case, Z(A)-linearity reduces to K-linearity, so in particular the Lie derivative X H 
Lx = ixd + dix is a connection on any of the central bimodules L&(A) and Q&,(A). 
These connections have vanishing curvatures since the Lie derivative is a homomorphism 
of Lie algebras. Acting on &(A) the Lie derivative is then a linear connection with a 
torsion T given by T(a)(X, Y) = [X, Y](a), or 1’~(o)(X, Y) = w([X, Y]) for LI E A. 
X, Y E Der(A), w E &,(A). 

Notice that if one has also Out(A) = 0, then both G and L are connections with zero 
curvature on the L?&,(A) and S&,,(A) but in general they are not gauge equivalent, except 
for n = 0 where they coincide with the canonical connection on A. In particular, on &,r( A) 

they are linear connections with opposite torsion and therefore 4 (6 + L) is (on &,,( A )) 
torsion-free. 

Remark. A priori, examples in Sections 5.2 and 5.3 are independent (Morita invariant) 
classes of algebras. For instance if C is a unital commutative algebra which is different from 
K. 1 and which has no nonzero derivation, e.g. C = K” with n s 2, then the matrix algebra 
MN(C) has a nontrivial center, C, and all its derivations are inner; on the other hand, if E is 
a vector space of dimension 2 2, the tensor algebra T(E) of E has a trivial center but any 
nonvanishing endomorphism of E extends uniquely as a derivation of T(E) which is never 
inner. However since here A is the analog of the algebra of smooth functions, one could 
prefer to choose A in such a way that it has “many” derivations. From this point of view, it 
is natural to introduce the following class Coo,‘: A belongs to the class Coo,’ if X(a) = 0, 
VX E Der(A) for a E A implies a E K.l. It is worth noticing here that this condition might 
not be sufficient to ensure the existence of “many” derivations: for instance let A = @ A” 
be a z-graded algebra with A0 = K.1, then the degree derivation defined by deg(a) = na 
if a E A” is such that deg(a) = 0 implies a E K.l, so A is in Cw,’ but it is easy to construct 
examples such that the only derivations are the multiple of deg. In any case, any A in CW~O 
such that Out(A) = 0 has a trivial center (i.e. examples of Section 5.2 in Coo,’ are contained 
in examples of Section 5.3). 

6. Duality and diagonal bimodules 

Let M be a central bimodule over A, then the space Homi(M, A) of all bimodule 
homomorphisms of M into A is a module over the center Z(A) of A, i.e. it is a Z(A)- 
module which will be denoted by MeA and called the dual of the bimodule M when no 
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confusion arises. The reader must be aware of the fact that M** is not the dual of A4 as 
A 63 A”p-module or as A @Z(A) A “P-module. Conversely, let N be a Z(A)-module then the 
space HomZ(A)(N, A) is canonically a bimodule over A which is diagonal, and therefore 
central since it is a subbimodule of AN. This diagonal bimodule will be denoted by N*A and 
called the dual ofthe Z(A)-module N. Thus one has a duality between central bimodules 
over A and modules over Z(A) which obviously refers to A; this duality is similar to the 
duality between left and right A-modules. In fact, when A is commutative all these four 
notions coincide with the notion of A-module. Notice that if M is a central bimodule, the 
duality (M, M*A) is separated if and only ifM is diagonal; another way to say the same 
thing is to remark that there is a canonical bimodule homomorphism CM : M + M**** and 
that this canonical homomorphism is injective if and only if M is diagonal. Dually, if N is 
a Z(A)-module, then there is a canonical Z(A)-module homomorphism c,v : N --f N**** 
which is in general not injective nor surjective; a sufficient condition for the injectivity of 
cN is that the canonical mapping of N into its Z(A)-module bidual N*Z(*)*Z(*) is injective. 
A Z(A)-module N will be said to be A-diagonal, or simply diagonal if no confusion 
arises, whenever the canonical mapping CN is injective or, which is the same, whenever 
it is separated by N*A = Homz(A)(N, A); this means that it is isomorphic to a Z(A)- 
submodule of A’ for some set I. Thus the dual M*A of any central bimodule M is diagonal. 
More generally, a duality between a central bimodule M and a Z(A)-module N will be a 
bimodule homomorphism ( , ) of M @z(A) N into A, (m, n) H (m, n); the duality ( , ) is 
separated in M if and only if (m, n) = 0 Vn E N implies m = 0, it is separated in N if and 
only if (m, n) = 0 Vm E A4 implies n = 0 and it is separated if and only if it is separated 
both in M and in N. We already know that if ( , ) is separated in M, then M is diagonal 
and if ( , ) is separated in N then N is diagonal. 

Finally a central bimodule M will be said to be reflexive whenever M = M***A, which 
implies that M is diagonal, and a Z(A)-module N will be said to be A-reflexive, or simply 
re$exive, whenever N = N *A*A which implies that N is diagonal. If M is reflexive then 
M** is reflexive and if N is refleiive then N** is reflexive. 

Remark. In fact the duality between central bimodules and Z(A)-modules comes from a 
duality between bimodules and Z(A)-modules. Indeed, if A4 is an arbitrary bimodule over 
A, then M** = Homi(M, A) is again canonically a module over the center Z(A) of A. 
Furthermore M*A** = I-IomZ(A) (M** , A) is still a diagonal bimodule and one has again a 
canonical bimodule homomorphism CM : M -+ M’A** which is, as a homomorphism of 
M onto CM(M), the functor Diag defined and studied in [9, 101 of the category of bimodules 
into the category of diagonal bimodules. The very reason why we here restrict attention to 
central bimodules is that only central bimodules reduce canonically to modules whenever 
A is commutative. From the point of view of the above duality, the diagonal bimodules 
and the A-diagonal Z(A)-modules are favoured and of course, even more favoured are the 
reflexive bimodules and the A-reflexive Z(A)-modules. 

After having introduced a notion of connection for central bimodules, it is natural to define 
a dual notion for Z(A)-modules. Let N be a Z(A)-module, a connection on N related to 
A, or simply a connection on N when no confusion arises, is a linear mapping V, X H VX 
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of Der(A) into the linear endomorphisms of N such that one has 

Vzx(n) = zVx(n), Vx(zn) = X(z)n + zVx(n) 
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Vn E N, VX E Der(A) andVz E Z(A). 
One defines, as in Section 2, the curvature R of V by Rx. y = [Vx, Vy ] - Vlx, ~1 and R is 

now an antisymmetric Z(A)-bilinear mapping of Der(A) x Der(A) into the Z(A)-module 
Homz(A,(N, N). The set of connections on N is, if not empty, an affine space modelled on 

Homz(A)(Der(A). Homz(.+t)(N, N)). 

The above definition is justified by the following lemma. 

Lemma 1. Let M be a central bimodule with a connection V. Then, there is a unique 
connection, again denoted by V, on the Z(A)-module M*A which satisfies 

X(~(rn)) = Vx(~)(m) + p(Vx(m)) VX E Der(A), Vp E M*A. Vm E M. 

Dually, let N be a Z(A)-module with a connection V. Then there is a unique connection, 
again denoted by V, on the central bimodule N*A which satisjes 

X(u(n)) = Vx(u)(n) + u(Vx(n)) VX E Der(A), Vu E N*“,Vn E N. 

Proo$ Define OX(~) for X E Der(A) and F E M*” by V,(p)(m) = X(,u(m)) - 
p(VX(m)), then it is easy to show that VX(F) E M*A and that V is a connection on 
M*A in the above sense. On the other hand V is obviously unique under the condition of 
the lemma. The proof of the dual statement is similar. 0 

In the case where M (resp. N) is reflexive then the affine space of all connections on M 
(resp. N) and the affine space of all connections on M** (resp.N**) are isomorphic under 

the above mapping. 
More generally, let ( , ) be a duality between a central bimodule M and a Z(A)-module 

N, then a pair (V, V’) of a connection V on M and a connection V’ on N will be said to be 
compatible with the duality ( , ) if one has X((m, n)) = (Vx(m), n) + (m, V;(n)) VX E 
Der(A), Vm E M and Vn E N. If the duality is separated in M (resp. N) then given V’ 
(resp. V), if V (resp. V’) exists it is unique. 

7. Derivations and forms 

As an illustration of the notions introduced in the latter section, let us investigate the 
duality between S&,(A) and Der(A), and between Der(A) and &,,(A). We summarize 
the result in the following theorem. 

Theorem 2. One has &,,(A) = (R,&,(A)) ***A More precisely, one has canonically: . 
(a) (QAe,,,(A))*A = Der(A) and the duality is separated, 
(b) (Der(A))*A = &(A) and the duality is separated. 
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Prooj By the universal property of d : A + C&.,(A) [9], we know that we have canon- 
ically Hom~(R&,(A), M) = Der(A, M) for any diagonal bimodule M; so the equality 
of (a) follows by taking M = A. The corresponding duality is separated since Q;,,(A) is 
diagonal (in fact this follows directly from the definitions). On the other hand, the equality 

. 
’ (b) is just the defimtton of QDer (A) and the corresponding duality is separated because 

(a) implies that the Z(A)-module Der(A) is A-diagonal. (Actually this last statement also 
follows directly from the fact that if X E Der(A) is such that w(X) = 0 VW E -r;?;,,(A), 
then da(X) = X(u) = 0 Vu E A, which means X = 0.) 0 

Theorem 2 shows exactly in what sense the minimal bimodule of derivation-based one- 
forms D,&,(A) is “dense” in the maximal one &,, (A). Applied to the case where A is 

the Heisenberg algebra, it implies that the algebra &,,(A) introduced in [5] in connection 
with the noncommutative symplectic structure of quantum mechanics is just &,,(A) (and 
in fact all the cochains in this case). 

In Section 4 we have defined a linear connection to be a connection on &,,(A). Theorem 
2(b) shows that there is a more restrictive notion of linear connection, namely a connection 
relative to A on the Z(A)-module Der( A) because by applying the second part of Lemmal, to 
such a connection corresponds a unique connection on &,,(A) and this mapping is affine 
and injective. In fact, given a connection V on Der(A) the torsion of the corresponding 
linear connection can be identified with the element T of Homz(A) (A&,)Der(A), Der(A)) 
defined by 

Tx,y = V,(Y) - V,(X) - [X, Y] VX, Y E Der(A). 

Theorem 2(a) combined with Lemma 1 shows that there is an even more restrictive notion 
of linear connection, namely a connection on at&, (A). 

8. Reality and hermitian structures 

In this section A is a unital *-algebra over C. An involutive bimodule or a *-bimodule over 
A is a bimodule M equipped with an antilinear involution m H m* such that (amb)* = 
b*m*u* Vm E M and Vu, b E A. Dually an involutive Z(A)-module is a Z(A)-module N 
equipped with an antilinear involution n H n* such that (zn)” = z*n* Vn E N and t/z E 
Z(A). Given an involutive bimodule M then the Z(A)-module Horn; (M, A) is an involutive 
Z(A)-module with involution k H ,u* given by p*(m) = (w(m*))* VW E Hom$(M, A) 
and Vm E M. Given an involutive Z(A)-module N then the diagonal bimodule N** = 
HOmz(A)(N, A) is an involutive bimodule with involution v H v* given by u*(n) = 
(u(n*)>* Vu E N** and Vn E N. Elements of such sets satisfying h = h* are called 
hermitiun or real. The Z(A)-module Der(A) is an involutive Z(A)-module with involution 
X t-+ X* defined by X*(u) = (X(u*))* VX E Der(A) and Vu E A. &,(A) and 
Q,!,,,(A) are therefore involutive bimodules. More generally one extends the involution to 
&,,(A) and G&,(A) by setting w*(Xt, . . , Xk) = (w(XT, . . . , Xl)>* for w E &,(A) 
(or G&,(A)) and Xi E Der(A). With this involution 52 _Der(A) is a differential graded 
*-algebra in the sense that one has d(w*) = (dw)* and (ofi)* = (-l)klb*~* for w E 
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&,(A) and cx E f&(A), B E Qber(A); the subspace L&(A) is a differential graded 
*-subalgebra. 

It is more or less well known that from the point of view of quantum theory as well as 
from the point of view of spectral theory the good generalization of the notion of algebra of 
real functions is nor the notion of real associative algebra but is the notion of the real Jordan 
algebra of all hermitian elements of an involutive complex algebra, i.e. *-algebra, which 
plays the role of the noncommutative generalization of the algebra of complex functions. It 
follows that what must generalize the module of sections of a real vector bundle for instance, 
or more generally the notion of module over an algebra of real functions is not the notion 
of right or left module or a notion of bimodules over a real noncommutative algebra but the 
set of real (i.e. hermitian) elements of a *-bimodule over a *-algebra which plays the role 
of the sections of the complexified vector bundle. Thus the natural category at hand is the 
category of involutive central bimodules over a *-algebra, and even more, if one thinks of 
real vector bundles for instance, the category of involutive diagonal bimodules and for the 
finite case the category of involutive reflexive bimodules over a *-algebra (with some other 
conditions replacing projectivity). Notice also that one can alternatively use the dual notion 
of the real elements of an involutive Z(A)-module or of an involutive diagonal or involutive 
reflexive Z(A)-module. In fact, there is a more restrictive notion of involutive diagonal and 
involutive reflexive which we call diagonal involutive and rqjlexive involutive which we 
now define. For any *-algebra A and any set I, A’ is canonically an involutive bimodule. 
A diagonal involutive bimodule over A (resp. a A-diugonal involutive Z(A)-module) is 
a A-bimodule (resp. a Z(A)-module) which is isomorphic to an involutive subbimodule 
(resp. sub-Z(A)-module) of A’ for some set I. These notions are A-dual and therefore if 
M is diagonal involutive, M *A** is also so, and if furthermore M = M***:l, we say that M 
is rejexive involutive. Notice that &,,(A), Der(A) and Q _Der(A) are diagonal involutive. 

Recall that a hermitian form on a right A-module E [2, 31 is a sesquilinear mapping 
h : E x E + A such that h(cpa, qb) = a*h(cp, q)b and (h(cp, $))* = h(+, cp) Vcp, $ E E 
andVa, h E A. 

For a bimodule M [ 151, a right-hermitian ,form on M, or simply a hermitian form on 
M when no confusion arises, will be a sesquilinear mapping h : M x M + A such that 
h(ma, nh) = a*h(m, n)b and (h(m, n))* = h(n, m) Vm. n E M and Vu, b E A, as above. 
and h(m, cn) = h(c*m, n) Vm, n E M andVc E A. The reason why the lattercondition has 
been included is that it allows to compose hermitian forms on right modules with (right-) 
hermitian forms on bimodules. Namely if E is a right module with a hermitian form hE 
and if M is a bimodule with a right-hermitian form h,+f then one defines a hermitian form 
h on the right module E @A M by setting h(cp 8 m, I/J @ n) = hM(m, hE(cp, $)n) (= 
hM(hE(@, cp)m, n)) VP, + E E and Vm, n E M. It is also clear that if E is a bimodule and 
if h E is a right-hermitian form then the above definition gives a right-hermitian form h on the 
bimodule E @A M. Furthermore, this composition of (right-) hermitian forms is associative 
in an obvious sense. Assume now that the positive cone A+ = (Ci alai 1 ai E A] of A is 
strict, i.e. that one has A’n(-AS) = [O), then a (right-) hermitian form h on a right module 
or a bimodule E is positive if h(cp, cp) E A+ VP E E and strictly positive if furthermore 
h(cp. cp) = 0 implies cp = 0. 
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Let M be an involutive bimodule and let g be a bimodule homomorphism of M @A M 

into A, i.e. g E Homi(M @A M, A), such that (g(m, n))* = g(n*, m*) then (m, n) I-+ 

h(m, n) = g(m*, n) is a right-hermitian form on M. Conversely, if h is a hermitian form 
on M then one defines a g E Horn; (M 8.4 M, A) by setting g(m, n) = h(m*, n) and one 
has (g(m, n))’ = g(n*, m*). Such a g E Homi(M @A M, A) satisfying (g(m, n))* = 

g(n*, m*) will be called a real inner product on the involutive bimodule M; g(m, m) is 
real whenever m is real. We shall say that g is positive (resp. strictly positive) whenever the 
corresponding hermitian form is so. 

Let M be a bimodule and let M’ = HomA(M, A) be the left A-module dual of M as a 
right A-module. The left module M’ is in fact a bimodule if one defines o.u for (Y E M’ and 
a E A by (cx.a)(m) = a(um) Vm E M. If M is a central bimodule, then M’ is also a central 
bimodule since, for a! E M’, m E M and z E Z(A), one has (zcx)(m) = za(m) = a(m)z = 

cr(mz) = cr(zm) = (az)(m). Assume now that M is an involutive bimodule equipped with 
a real inner product g. One defines a bimodule homomorphism g” E Hom:(M, M’) by 
setting gD(m)(n) = g(m, n) Vm, n E M. The real inner product g on M will be said to be 
nondegenerate whenever gtt is injective. If g is strictly positive, then g is nondegenerate. 

Given an involutive central bimodule M, a connection V on M will be said to be real if 
(Vx(m))* = VX* (m*). If g is a real inner product on M, a real connection V on M will be 
said to be compatible with g if one has 

X(g(m, n)) = g(Vxm, n) + g(m, Vxn) Vm, n E M, VX E Der(A). 

With obvious notations the above condition also reads 

Xg(m @A n) = g(VF*(m @A n)) or X 0 g = g 0 v$. 

Notice that a nondegenerate real inner product g on &(A) is not yet a complete non- 
commutative generalization of the notion of pseudo-riemannian structure (and of riemannian 
structure whenever g is strictly positive); indeed the noncommutative generalization of the 
symmetry is still missing. 

9. Noncommutative (pseudo-)riemannian structures 

In this section A is again a unital *-algebra over C. We wish to investigate what kind of 
additional symmetry one has to impose on a nondegenerate real inner product on &,(A) in 
order that it can be considered as a noncommutative generalization of a pseudo-riemannian 
metric. Although the solution is quite obvious in simple situations, for instance if A is finite- 
dimensional, this is not the case for a general *-algebra A as we shall see. Fortunately, by 
taking a dual point of view, there is a natural generalization of the notion of a pseudo- 
riemannian metric on the Z(A)-module Der(A). We define a pseudo-metric to be a sym- 
metric Z(A)-bilinear mapping g* of Der(A) x Der(A) into A, i.e. g* E (.S&,)Der(A))*A, 
which is real, i.e. (g*(X, Y))* = g*(X*, Y*), and which is nondegenerate in the sense that 
the corresponding mapping g$ : Der(A) + 52 ’ _D,r(A) defined by g!(X)(Y) = g*(X, Y) is 
injective. A connection V relative to A on the Z(A)-module Der(A) which is torsion-free, 
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i.e. whichsatisfiesVx(Y)--y(X) = [X, Y],andwhichissuchthatonehasZ(g*(X, Y)) = 
g,(Vz(X), Y) + g,(X, Vx(Y)) for X, Y, Z E Der(A) will be called aLevi-Civiru connec- 
tion for g,. Summing over the cyclic permutations of the last equation with signs + + - 
and using the symmetry and the vanishing of the torsion one obtains 

%*(Vx(Y), Z) = X(g*(Y, Z)) + Y(g*(X, Z)) - Z(g*(X. Y)) 
+g*(]X, Yl, .a - g*([Y, Zl, X) + g*([Z, Xl, Y) 

So if there exists such a Levi-Civita connection for g*, then it is unique since g* is non- 
degenerate. It follows from the reality of g* and from the uniqueness that a Levi-Civita 
connection for g* is real, i.e. that one has (Vx(Y))* = Vx*(Y*). As pointed out in Sec- 
tion 7, such a connection can be identified with a connection on &_(A) (i.e. with a 
linear connection) which is torsion-free and the above reality condition implies that it 
is a real connection on &,,(A) in the sense of Section 8. We are now in a position 
to discuss the additional symmetry that one has to impose on a nondegenerate real in- 
ner product on &,(A) in order that it generalizes a pseudo-riemmannian metric. Both 

$JA)@&~,,(A) and (S2 z(,)Der(A))*A are subbimodules of the diagonal bimodule 
(Der(A)@z(A)Der(A))*A of all Z(A)-bilinear mappings of Der(A) x Der(A) into A. One 
defines a bimodule automorphism r~ of (Der(A)@z(A) Der(A))*A by setting B (b)(X. Y) = 
h(Y, X) for b E (Der(A)@z(A)Der(A))*A and X, Y E Der(A). The set of all o-invariant 
elements constitutes the bimodule (SZ(,,Der(A))*A whereas &.(A)@A &,,(A) is not 
stable by g in general. The latter point is the only draw back to writing the additional sym- 
metry on the nondegenerate real inner product on &r (A). Indeed, suppose that A is such 
that &(A)@,&,,(A) is stable by 0, for instance assume that 

&,(A) @A &,(A) = Per(A) @Z(A) Der(A))*‘, 

which is the case when A is finite-dimensional, then one can take the pseudo-metrics in 
&,,(A)@A &,,,(A). One sees, by duality, that in order that a nondegenerate real inner 
product g be a generalization of a pseudo-riemannian metric, it must be o-invariant, i.e. 
g = g o n. In any case, in our framework, we can content ourselves with the above deh- 
nition of pseudo-metric. It is worth noticing that it has been suggested in [ 141 that one can 
generalize our definition of linear connections in the case where QDer (A)@&Der(A) is 
a-invariant to other differential calculi (nonderivation-based) by generalizing the bimodule 
homomorphism CT. This latter approach has been used in two simple cases [8. 131. 

10. Conclusion 

This paper is the first one of a series. Here we essentially introduce the basic definitions 
and motivations without paying attention to the existence problems. Also we have not 
introduced characteristic classes but we have contented ourselves with some comments on 
what they cannot be (factorization of inner derivations, etc.). It must be clear that, in order 
to define such classes as well as to develop a corresponding K-theory, one must restrict 
attention to a class of bimodules (and Z(A)-modules) which is smaller than the class of 
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all central bimodules (and ail Z(A)-modules). It is also obvious that the (finite projective) 
right and left modules together with their tensor products and their tensor products with the 
appropriate bimodules have to be taken into account. It is also worth noticing here that many 
notions introduced in this paper do not refer to the specific differential calculus (derivation- 
based) that we use and could be applied to other differential calculi. Finally here we have 
worked in the purely algebraic setting; but one can easily put everything in the setting of 
convenient vector spaces in order to eventually take into account topologies as in [lo]. 
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